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 

Abstract— The present work is concerned with surface 

instabilities of non-Newtonian liquid films, usually called roll 

waves (RW). A thin liquid film in which the shear stress is 

modeled as a power-law is considered to study the stability of 

nonlinear roll waves down inclined plane walls. In the long wave 

approximation, depth-integrated continuity and momentum 

equations are derived by applying Karman's momentum 

integral method. As the linearized instability analysis of 

uniform flow only provides a diagnosis of instability, the 

modulation equations for wave series are derived and a stability 

criterion depending on two parameters (integro-differential 

expression) is obtained. The main difficulty to establish the 

stability domain is due of the presence of singularities near 

infinitesimal and maximal amplitudes. Numerical calculations 

are performed using asymptotic formulas near the singularities. 

The stability diagrams are presented for some values of the flow 

parameters. They reveal that there are situations wherein at 

critical values of the flow parameters, where the waves 

disappear. For the prediction and control of the free-surface 

profile, it is one of the main reasons for carrying out research in 

this area, as RW are generally an undesirable phenomenon. 

 

 
Index Terms— Power-Law Fluid, Inclined Plane Wall, 

Modulation Equations, Nonlinear Stability of Roll Waves  

 

 

I. INTRODUCTION 

It is well known that a steady discharge in inclined long 

open channels may develop into roll waves. In the initial 

stage of their development the waves are of small amplitude 

and the free surface is smooth. 

A steady shallow turbulent flow becomes unstable if certain 

criteria are satisfied and may evolve towards breaking bores 

propagating at almost constant speed and followed by smooth 

long waves. Such waves have been described for the first time 

by Cornish [1] who has observed them in water runways. The 

quantitative analysis of turbulent RW of finite amplitude by 

assuming the Chézy law for bottom resistance has been first 

given by Dressler [2]. In Dressler’s theory the length scale is a 

free parameter. However, it is well known that these waves 

develop rather in a narrow band of dimensionless wave 

numbers [3]. Hence for, the question on stability of nonlinear 

RW arises. 
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In the thin laminar viscous liquid flow down an inclined 

plane wall is of considerable importance for wide 

applications in the fields of chemical technology 

[4][5][6][7][8]. Over a range of flow parameters, a variety of 

free instabilities may occur. Roll waves are among these flow 

patterns, which may exhibit quasi-periodic spatial structures 

of the free surface. A description of nonlinear analysis of RW 

has been considered in Liapidevskii [9]; Boudlal & 

Liapidevskii [10] respectively in two-dimensional flow and 

for arbitrary cross sections by deriving the modulation 

equations and stability diagrams of periodic series of 

nonlinear RW [11][12][13]. Laminar sheet flow with 

quadratic distribution of velocity profile has been studied by 

Alekseenko & Nakoriakov [5]; Buchin & Shaposhnikova 

[14]; Julien & Hartley [15]. 

From the experimental work on Newtonian thin film of 

Kapitza [16], Liu, Paul & Gollub[17], among others, have 

experimentally investigated the linear stability. A detailed 

study of this work can be found in the book of François 

Charru [18]. Due principally to the effect of inertia, surface 

instabilities of flows in Newtonian and non Newtonian 

shallow layer fluids down inclines have been observed for a 

long time. Over a range of the flow rates several kinds of 

waves may occur. These flows play an important role in 

natural and various industrial processes.  During the fourth 

decades of the 20th century up to now, investigation of RW 

principally instigated by industry needs has been intensive. 

Generally, the generation and amplification of surface 

instabilities is an undesirable phenomenon because of 

destructive damage which may be induced. 

A report for the most work conducted in this area can be 

found in extensive references quoted by Ng & Mei [4]. The 

flow of non-Newtonian power law fluids occurs frequently in 

the fields of chemical technology and geophysical process 

[4][6][19][20]. The waves may develop into finite-amplitude 

permanent wave trains accompanying a series of jumps. RW 

have been observed and reported by several authors in mud 

flow [4] and extended to granular flows in dense regime [21]. 

An extensive treatment has been conducted in this turbulent 

regime area by Dressler [2]; Boudlal & Liapidevskii [11]; 

Jeffreys [22]; Femndez-Nieto, Nobel & Vila [23], among 

others. Dressler’s theory, originally developed for fully 

turbulent flows, has been extended to Newtonian flow by 

Ishihara [24]; Iwasa [25] and to non-Newtonian thin film in 

Ng & Mei [4]. It has been shown, in particular, that for highly 

non-Newtonian fluids, very long waves may occur even if the 

corresponding flow is instable according to the linear theory. 

On the other hand, much amplitude RW are inadmissible 

relative to the loss of energy across the shocks. So, the on 

stability of nonlinear RW arises once more. 

In this theory the length of roll waves is the free parameter, 

and the flow characteristics of saturated waves, which stop to 

Nonlinear Stability of Roll Waves Down an 

Inclined Falling Film 

Kan ZHU, Abdelaziz BOUDLAL, Gilmar MOMPEAN 



 

 

Nonlinear Stability of Roll Waves Down an Inclined Falling Film 

 

                                                                             66                                                                              www.wjrr.org 

grow after attaining some critical amplitude, cannot be 

predicted. Therefore, the question on stability of travelling 

waves of finite amplitude arises. Dissipative shallow water 

models let construct smooth periodic solutions describing the 

roll wave phenomenon, nevertheless in these models the 

length of periodic waves is a free parameter again. 

The aim of the paper is to give a nonlinear study on stability 

of permanent roll waves on a shear thinning fluid in the frame 

of one-dimensional, unsteady, gradually varied, laminar mud 

flow with the shear stress being evaluated in a conventional 

manner. Starting from long wave’s equations averaged over 

the normal to the bed, on the basis of C. O. Ng and C.C. Mei's 

model, periodic roll waves are constructed. As the amplitude 

and the phase velocity of waves are slowly varying during 

their propagation and as these variations give rise to 

instability, this problem of stability can be solved by deriving 

modulation equations for wave packets [11][12][26][27]. The 

stability criterion for nonlinear roll waves is formulated in 

terms of hyperbolicity of modulation equations that need 

calculation of averaged quantities. The main difficulty to 

establish the stability domain on a roll wave diagram is due to 

the singularities in the hyperbolicity condition of modulation 

equations for the waves of the infinitesimal and maximal 

amplitude. Using an asymptotic analysis, the stability 

conditions of roll waves of maximal amplitude, as well as the 

approximate position of boundaries of the hyperbolicity 

domain are obtained. 

Boudlal & Liapidevskii [11] have already given a non linear 

study of stability of permanent roll waves on shear thinning 

fluid on vertically falling films in the basis of 

one-dimensional, unsteady gradually varied, laminar mud 

flow with shear stress being evaluated in conventional 

manner. Note that for a vertically falling film, the system 

being self-similar, the modulation equations take a rather 

simple form and the hyperbolicity criterion is reduced to a 

condition for a function of one variable. Here we present an 

inclined flow. The stability condition depends on two 

governing parameters. Numerical calculations of stability 

diagrams corresponding to an inclined plane wall are 

presented. All results presented herein can be regarded as a 

generalization to a power law mud fluid in laminar flow 

regime of non linear stability method already applied to 

Newtonian turbulent flows in open channels [10].We find 

that roll waves can disappear for a critical value of the flow 

parameters, it is very important in surface coating processes: 

paints and varnishes, inking in the printing press, depositing 

thin layers on magnetic tapes and photographic films, etc. In 

these situations, an essential quality of the liquid films is the 

uniformity of their thickness, and the roll waves must be 

absolutely avoided. 

  

II. GOVERNING EQUATION 

We consider a two-dimensional flow of a thin fluid film 

down a plane inclined with an angle ,  (0 / 2)    . The 

coordinate axes are chosen such that the Ox axis  points in 

the flow direction, and Oy axis perpendicular to it, directed 

upward (Fig.1). 

In the long wave approximation, the film thickness depends 

only on x and t  , and the pressure is 

hydrostatic: ( )np g h y  , where cosng g  . The shear 

is modeled by a power law of the form [4][11]:  
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Fig.1 Sketch of flow model 

 

With the following dimensionless quantities defined by: 
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Here h  is the depth, u  is the mean velocity, t  is the time, 

g  is the gravity acceleration and
b  is the bottom stress, the 

subscript 0 stands for the reference quantities. The viscosity 

coefficient is denoted by
n with dimension 

1 2nML T     and 

n  is the flow index (0 1)n  . The case 1n   corresponds 

to the Newtonian fluid and 
1  is the ordinary dynamic 

viscosity [4][11].                                    

In dimensionless variables, the governing equations of mass 

and momentum conservation, averaged in the ordinate 

direction may take the form (the asterisks are omitted for 

simplicity) [1]: 

 

  2 2

0,                                                            (3a)

1
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The main objective of this work is to investigate the 

nonlinear stability of roll waves. For this purpose the 

approach developed in [11] for RW on vertical plane will be 

applied for thin viscous film flows on an incline.  

 

III. WITHAM’S STABILITY APPROACH 

Let a small perturbation of subscript 1 be added to the base 

uniform flow of subscript 0 as follows: 

0 1 0 1 1 0 1 0,   ( ,  )h h h u u u h h u u              (4) 

From a standard linear analysis it is shown in [1] that the 

stationary solution of (3):  
1

0 0 0,  cte
n

nu h h


                                              (5) 

is unstable if the following condition is satisfied [1] : 

       
2

1 2n

n



                                                 (6) 
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The same criterion (6) of transition to instable flow can be 

derived by the method promoted by Witham's method [12]. 

Indeed, after eliminating 
1u and derivation, the linearized 

system (3) takes the following condensed form: 

1 1 0d d ch n h
t x t x t x

               
                    

(7) 

There is stability if the velocity of the kinematic waves lies 

between the velocities of the dynamic wave
d
 , i.e. 

,d c d                                         (8) 

If
0 0 1u h  , we obtain: 

1
2 ,  ( 1)c d

n
                           (9) 

On substituting from (8), the condition (6) is recovered. 

IV. ROLL WAVES 

We intend to construct discontinuous periodic wave 

solutions which propagate with a constant speed 

 (0 )D u D  (Fig.2). In the frame of reference 

accompanying the waves the flow is steady and equations (3) 

may be expressed in terms of the single variable x Dt   . 

With this transformation, equation (3a) may be integrated 

directly to give  

( )q D u h                                    (10) 

where the constant q is equal to the apparent discharge rate or 

progressive discharge according to [4].    

Between two successive discontinuities the momentum 

equation is valid, making use of (10), equation (3b) leads to 

an ODE for h which may read:  

 

 
Fig.2 Sketch in the frame of reference accompanying the roll 

waves 
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The profiles of ( )G h and ( )h are shown in Fig.3. As it can 

be seen ( )G h must present a minimum which will be called 

the critical depth and denoted by ch .  

To complete the construction of roll wave, we must give the 

jump conditions. From the system (3), with the help of (10), 

the relations at jump discontinuity are reduced to 

1 2

1 2

( ) ( )

( ) ( ) ( )c

G h G h

q h q h q h




 
                                (15) 

where subscripts 1 and 2 denote the right and the left sides of 

the discontinuity. Equations (15) show that the roll wave 

depend on two parameters, for example:
1,  ch h . From system 

(15), we get a relation between the two depths 
1h  and 

2h as: 
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which is reduced to: 
2

2 2

1( 1)

q
h

D h







                               (17) 

for 0  (vertical wall). 

  

 
Fig.3 Profile of G  and   vs. h  

 

For standard roll waves with the only one jump on the 

period that divides the monotone smooth parts of flow. 

Therefore, it is necessary for the roll wave existence that the 

subcritical flow behind the jump ( 0)   transforms into the 

supercritical flow ( 0)   before the next jump, and there 

exists the critical depth 
ch  on the period. For the roll wave 

existence it is necessary that ( )F h and ( )h vanish at the 

critical depth ch  simultaneously (Fig.4), i.e. 

( ) ( ) 0c cF h h                                        (18) 

After some algebra manipulations, taking (10) into account, 

the system (18) leads to 
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Fig.4 Profile of   and F  vs. h  
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For 
1h  and 

ch  given, the conditions: 

2

1

( ) 0           for    

( ) 0           for    

c

c

F h h h h

F h h h h

  


  
                  (20) 

are necessary and sufficient for the formation of roll waves. It 

is shown in [1] that there exist solutions for roll waves only if 

1m ch h h   where 
mh and 

ch  are the two roots of the 

equation ( ) 0F h  , as shown in Fig.4. 

According to the reported observations, between two 

successive jumps the surface profile must increase, otherwise 

the slope dh d must be positive; it is also the condition of 

irreversibility of hydraulic jump. 

Moreover, as ' ( )ch is positive, the necessary condition 

' ( ) 0cF h                         (21) 

is required, i.e. 
2

2

1 2
n

n
c

n
h

n



 

  
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            (22) 

Compared to the previous stability condition (6), we obtain 

two conditions of existence of roll waves

For 1ch  , roll waves can only occur if the uniform base flow 

is unstable, in this case, the required linear stability criterion 

(6) is unconditionally satisfied, since the transition from 

uniform flow to intermittent flow regime is usually tackled by 

resorting to stability theory according to [1]. Whereas 

for 1ch  , roll waves can occur even if the uniform flow is 

stable to small disturbances. 

These two conditions are illustrated in Fig.5 for 0.4n  . 

 

 

Fig.5 Regions of admissible RW:   ___
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stability to infinitesimal disturbances. 

 

V. MODULATION EQUATIONS 

The periodic solution of (3) is defined by two parameters, 

we can choose 
1h and ch as such parameters. The problem on 

nonlinear stability of periodic wave trains with slowly 

varying values 
1h  and ch  can be solved by analysis of 

hyperbolicity of the modulation equations for such waves. 

After averaging (3) over the fixed length scale, which is large 

enough, compared with the length of roll waves, the 

following modulation equations: 
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are obtained. All averaged quantities can be expressed in 

functions of 
1h and 

ch as following: 
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In view of (24), the modulation equations take the form: 
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The non stationary evolution of the governing parameters 

( , )cz h  for a periodic wave train is described by equation (25). 

We say the roll waves are stable if the modulation equations 

(25) for corresponding values ( , )cz h  are hyperbolic. The 

investigation of hyperbolicity of the modulation equations 

can be performed more easily for the variables h and
ch . It 

can be done by the transformation 

( , )ch h z h and ( , ) ( , )c cB h h B z h . The modulation 

equations take the following form: 
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The characteristics of (26) are 
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Here the “prime” denotes the full derivation on the 

variable ch . The hyperbolicity condition for (27) is 

0Disc                                                                                    (28) 

It follows from (27) that the stability of RW depends 

on ,  cz h . Moreover, there exists a value 
*

m ch z h   such 

that the system (26) is elliptic for 
*

cz z h  and it is 

hyperbolic for
*

mh z z  . It means that periodic travelling 

waves become stable only if they have the amplitude 

exceeding some critical value. The calculations show that the 

values 
* ,  mz h  are very close to each other. Therefore, to find 
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the stability domain on the ( ,  ) planecz h  , we have to resolve 

the singularities in (24) at near maximal amplitude 

for ,  mL h h  . The asymptotic analysis for such case is 

performed in the following section. 

 

VI. STABILITY OF ROLL WAVES OF NEAR MAXIMAL 

AMPLITUDE 

Suppose that roll waves are defined for every critical 

depth
ch from an interval. It means that there are the smooth 

functions * *( )cz z h and * *( , )cw w z h , and the conditions 

(20) are satisfied for conjugate depths ,z w  with 
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When 
*z z  we can use the asymptotic formulae 
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Excluding the wave length L  from (29) we have: 
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The approximate expression for the function 
( , ) ( , )c cB h h B z h is given by the following formulae, in 

which the limits of integrals in (30) are used for
*z z . 


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*
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*

* * '* *

*

*

'*

( , ) ( , ) ( )

( ( , ) ( , )) ( , )
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c c

w

c c c

z

w

c

z

B h h B z h B h z

B s h B z h b s h ds

s z
B

b s h ds

  










                (31) 

The approximation (31) can be applied for calculations of 

the hyperbolicity domain of the modulation equations (26). 

For that we replace the function ( , )cB h h by 
*

( , )cB h h . The 

criterion of the hyperbolicity takes the form: 

   
2

* ** ' 1 22( 1) ( 2 ) 4 ( 1)
ch hDisc D m D B D B           (32) 

Due to the linear dependence  *

B on h  in (31) the 

boundaries of the hyperbolicity domain ( )ch h h
 

  can be 

calculated from the quadratic equation 
*( , ) 0cDisc h h  relative to h  in the explicit form: 
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2 3
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

 





  




      

    



 (33) 

 

VII. NUMERICAL RESULTS 

For clarity, 1ch  is chosen as a reference solution. Fig.6 

and Fig.7 represent the limits of the waves of maximum 

amplitude and the boundaries of hyperbolicity for some 

significant flow parameters. They show the influence of the 

fluid viscosity, and the bottom inclination respectively. 

A. Influence of the Fluid Viscosity: 

 

 
 

Fig.6 Limits of the waves of maximum amplitude mh  and 

boundaries of hyperbolicity ( , )h h 
as a function of n  for 

0,  0.25,  0.5,  1,  and 1ch       
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From Fig.6, we note that, for a vertical flow, as the viscosity 

increases, the amplitude of admissible waves diminishes and 

the stability domain reduces until it disappears, that is to say, 

in the vertical case, the viscosity disfavors the production of 

RW; for an inclined flow, it is observed that as the viscosity 

increases up to a critical value, the stability domains diminish 

and eventually disappear, and after this critical value, the 

stability domains reappear, i.e., in the inclined case, the 

viscosity initially disfavors the production of RW until a 

critical value, after this critical value it favors the production 

of RW. 

 

B. Influence of the Bottom Inclination: 

 

 
 

 

 
 

Fig.7 Limits of the waves of maximum amplitude mh  and 

boundaries of hyperbolicity ( , )h h 
as a function of   for 

1,  0.8,  0.6,  0.4,  0.2, 0.1 and 1cn h      

 

From Fig.7, we can observe that, for a Newtonian fluid, as 

the bottom inclination decrease downwardly, the amplitude 
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of admissible waves diminishes and the stability domain 

reduce until the disappearance, in other words, the bottom 

inclination disfavors the production of  RW;  for a slightly 

non-Newtonian fluid 0.8n  , it has the same tendency as the 

Newtonian fluid; for a highly non-Newtonian 

fluid 0.6,  0.4,  0.2,  0.1n  , it is found that as the bottom 

inclination decreases down to a critical value, the stability 

domains are reduced and disappear, after this critical value, 

the stability domains reappear and increase, i.e., the bottom 

inclination initially disfavor the production of RW until a 

critical value, and after this critical value, it favors the 

production of RW.  

 

C. Nonlinear Stability Diagram 

Let us vary
ch , the nonlinear stability diagrams 

corresponding to solutions (33) are represented in the 

( , ) planech h  in Fig.8, where the curves h h  and 

h h  are the boundaries of stable hyperbolic domains
h . 

In the elliptic domains 
e  roll waves are unstable. The curve 

ch h corresponds to roll wave of infinitesimal amplitude, 

and the curve mh h  corresponds to roll wave of admissible 

maximal amplitude. The curve 0E  corresponds to the 

roll waves with zero dissipation across the shock [1]. 

Obviously the shock is accompanied by the loss of 

energy 0E  , the calculation of E can be seen in [1].     

 

 

 
 

 
 

Fig.8 Nonlinear stability diagram of roll waves for different 

values of ( , )n    -----:  mh h  ; .…: 0E   ;  

Gray region: Stable Periodic Wave Domain (D.St.O.P) 

 

From Fig.8, we can see, the waves of moderate amplitude 

are stable, and the waves of small amplitude are unstable. The 
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roll wave becomes stable only if they have the amplitude 

exceeding some critical value. The roll wave without 

dissipation across the shock is a wave of small amplitude. 

This type of wave is unstable. It makes sense that the waves 

of maximum amplitude are potentially damaging. 

 

 

VIII. CONCLUSION 

We have investigated the roll wave’s generation on laminar 

flow of the thin layer down an inclined plane by nonlinear 

hyperbolic system [4], in which the rheological behavior is 

modeled by a power law. It has been shown that the roll 

wave’s periodic solution can be described by two parameters 

analogously to roll waves in open channel flow. The linear 

stability criterion is unconditionally satisfied together with a 

roll wave required condition if the inequality (22) is verified, 

while dimensionless critical depth is less than 1. A stability 

criterion based on hyperbolicity of modulated equations has 

been presented. The asymptotic analysis has been performed 

and the stability criterion for roll waves of maximal 

amplitude as well as the approximate position of boundaries 

of the stability region has been derived. Numerical 

calculations have been performed for some significant flow 

parameters. They have revealed that for a critical value of 

 or n , the roll waves disappear, it can be very interesting in 

manufacturing industry. 
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